在黄仁勋看来,随着摩尔定律消亡,GPU加速才是撬动未来高性能计算发展的有力杠杆。有数据显示,目前NVIDIA已经销售了超过15亿块GPU,而这些GPU由于采用了同一架构,均能兼容CUDA。

不仅仅如此,身着经典皮衣的黄教主更认为硬件的“登峰造极”不仅仅局限于芯片,只有软件得到相应性能的完整优化,未来的多GPU才能彰显最出色的处理能力。基于此,NVIDIA在CUDA平台上配置了相当丰富的软件库,并且选择在去年一整年推出了超过500个相应的SDK以及库来不断改进NVIDIA的软件栈。有数据显示,通过这些专门的SKU,NVIDIA的产品在过去三年的深度学习性能提升了4倍,而深度学习推理性能也相应提升了2倍。列举如此多样的软件升级,要说目前实在硬核的NVIDIA软件创新,当属最新一代推理软件开发套件NVIDIA TensorRT 7编译器的推出。
晶少了解到,TensorRT作为一种计算图优化编译器能够优化推理实现实时AI会话,将TensorFlow的输出结果进行优化,简单理解位可以高效寻找计算途中可以融合的节点,从而减少计算和内容的访问来进行CUDA码的优化,值得提及的是可以运行在任何GPU上。
“去年我们在中国发布了TensorRT 5,可以处理CNN,而且是在图形的同一层将边缘与节点融合;此外还支持自动检测以及自动低精度推理,将FP32模型转换成FP16
© 版权声明
文章版权归作者所有,未经允许请勿转载。