【AI大模型前沿】昆仑万维开源Skywork-R1V3:38B多模态推理模型,高考数学142分刷新开源SOTA
系列篇章💥
| No. | 文章 |
|---|---|
| 1 | 【AI大模型前沿】深度剖析瑞智病理大模型 RuiPath:如何革新癌症病理诊断技术 |
| 2 | 【AI大模型前沿】清华大学 CLAMP-3:多模态技术引领音乐检索新潮流 |
| 3 | 【AI大模型前沿】浙大携手阿里推出HealthGPT:医学视觉语言大模型助力智能医疗新突破 |
| 4 | 【AI大模型前沿】阿里 QwQ-32B:320 亿参数推理大模型,性能比肩 DeepSeek-R1,免费开源 |
| 5 | 【AI大模型前沿】TRELLIS:微软、清华、中科大联合推出的高质量3D生成模型 |
| 6 | 【AI大模型前沿】Migician:清华、北大、华科联手打造的多图像定位大模型,一键解决安防监控与自动驾驶难题 |
| 7 | 【AI大模型前沿】DeepSeek-V3-0324:AI 模型的全面升级与技术突破 |
| 8 | 【AI大模型前沿】BioMedGPT-R1:清华联合水木分子打造的多模态生物医药大模型,开启智能研发新纪元 |
| 9 | 【AI大模型前沿】DiffRhythm:西北工业大学打造的10秒铸就完整歌曲的AI歌曲生成模型 |
| 10 | 【AI大模型前沿】R1-Omni:阿里开源全模态情感识别与强化学习的创新结合 |
| 11 | 【AI大模型前沿】Qwen2.5-Omni:阿里巴巴的多模态大模型,实现看、听、说、写一体化 |
| 12 | 【AI大模型前沿】SmolDocling:256M参数的轻量级多模态文档处理利器,10分钟搞定百页PDF |
| 13 | 【AI大模型前沿】Stable Virtual Camera:Stability AI 推出的2D图像转3D视频模型,一键生成沉浸式视频 |
| 14 | 【AI大模型前沿】阿里 Qwen3 震撼开源,模型新王诞生,开启全球大模型新纪元 |
| 15 | 【AI大模型前沿】InternVL:OpenGVLab开源多模态大模型,解锁视觉问答与多语言翻译的全能应用图鉴 |
| 16 | 【AI大模型前沿】Fin-R1:上海财经大学联合财跃星辰推出的金融推理大模型,凭7B参数拿下评测第二,离行业第一仅差3分 |
| 17 | 【AI大模型前沿】Med-R1:基于强化学习的医疗视觉语言模型,突破跨模态医学推理的普适性 |
| 18 | 【AI大模型前沿】Baichuan-M1-14B:百川智能推出专为医疗优化的开源大语言模型 |
| 19 | 【AI大模型前沿】一键生成宫崎骏动画风,EasyControl Ghibli 让照片秒变吉卜力艺术品 |
| 20 | 【AI大模型前沿】TxGemma:谷歌推出的高效药物研发大模型,临床试验预测准确率超90% |
| 21 | 【AI大模型前沿】F5R-TTS:腾讯推出TTS领域的新王者,又快又准又自然,零样本语音克隆新高度 |
| 22 | 【AI大模型前沿】MiniMind-V:低成本打造超小多模态视觉语言模型(仅需1.3元人民币和1小时) |
| 23 | 【AI大模型前沿】MoCha:端到端对话角色视频生成模型、电影级对话角色合成黑科技、重新定义动画创作 |
| 24 | 【AI大模型前沿】HuatuoGPT-o1-7B:中英文双语医学推理,打破语言障碍的AI大模型 |
| 25 | 【AI大模型前沿】MedReason:大规模医学推理数据集、借用知识图谱将大模型打造成“医术”专家 |
| 26 | 【AI大模型前沿】SkyReels-V2:昆仑万维开源的无限时长电影生成模型,开启视频生成新纪元 |
| 27 | 【AI大模型前沿】Dia:Nari Labs开源16亿参数TTS模型,只需文本输入,生成媲美真人对话的语音 |
| 28 | 【AI大模型前沿】阿里巴巴开源LHM:单图生成可动画3D人体模型,开启3D建模新纪元 |
| 29 | 【AI大模型前沿】TinyLLaVA-Video-R1:北航开源视频推理模型、小尺寸大智慧、参数少一半,性能翻一番 |
| 30 | 【AI大模型前沿】TTRL:测试时强化学习,开启无标签数据推理新篇章 |
| 31 | 【AI大模型前沿】Aero-1-Audio:Qwen2.5架构加持,轻量级音频模型天花板、吊打Whisper |
| 32 | 【AI大模型前沿】DianJin-R1:阿里云通义点金联合苏大推出的金融推理增强大模型 |
| 33 | 【AI大模型前沿】VITA-Audio:腾讯开源的高效语音交互多模态大语言模型 |
| 34 | 【AI大模型前沿】Multiverse:全球首个AI多人游戏世界模型,低成本高效率新突破 |
| 35 | 【AI大模型前沿】Seed1.5-VL:多模态理解的效率革新者,以小博大,性能惊艳 |
| 36 | 【AI大模型前沿】ViLAMP:蚂蚁集团和人民大学联手打造的长视频理解利器,单卡处理3小时视频 |
| 37 | 【AI大模型前沿】Muyan-TTS:开源零样本语音合成模型、0.33秒极速生成播客级语音、小白也能玩转AI配音 |
| 38 | 【AI大模型前沿】Dolphin:字节跳动开源文档解析大模型,轻量级、高效、多格式,开启文档处理新时代 |
| 39 | 【AI大模型前沿】ChatTS:字节跳动联合清华大学开源、多模态时序大模型助力时序数据对话与推理 |
| 40 | 【AI大模型前沿】Index-AniSora:B站开源的动漫视频生成模型,助力高效创作 |
| 41 | 【AI大模型前沿】RelightVid:上海 AI Lab联合复旦等高校推出的视频重照明模型 |
| 42 | 【AI大模型前沿】BAGEL:字节跳动开源、多模态大模型的创新突破与实践指南 |
| 43 | 【AI大模型前沿】Matrix-Game:昆仑万维开源大模型,一键生成你的专属虚拟世界 |
| 44 | 【AI大模型前沿】Pixel Reasoner:滑铁卢联合港科大等高校推出的视觉语言模型,助力视觉推理新突破 |
| 45 | 【AI大模型前沿】CoGenAV:多模态语音表征新范式、通义联合深技大打造、噪声环境WER降低70%+ |
| 46 | 【AI大模型前沿】Ming-Lite-Omni:蚂蚁集团开源的统一多模态大模型的创新实践 |
| 47 | 【AI大模型前沿】DeepEyes:小红书与西安交大联合打造的多模态深度思考模型 |
| 48 | 【AI大模型前沿】OmniAudio:阿里通义实验室的空间音频生成模型,开启沉浸式体验新时代 |
| 49 | 【AI大模型前沿】MiniCPM 4.0:面壁智能开源的极致高效端侧大模型(小版本、低消耗、220倍极致提速) |
| 50 | 【AI大模型前沿】SmolVLA:Hugging Face开源的轻量级视觉-语言-行动机器人模型 |
| 51 | 【AI大模型前沿】Time-R1:伊利诺伊大学香槟分校开源的时间推理语言模型、实现过去→未来全链路推演 |
| 52 | 【AI大模型前沿】MonkeyOCR:基于结构-识别-关系三元组范式的文档解析模型 |
| 53 | 【AI大模型前沿】GLM-4.5:智谱打造的开源SOTA模型,推理、代码与智能体能力融合先锋 |
| 54 | 【AI大模型前沿】百度飞桨PaddleOCR 3.0开源发布,支持多语言、手写体识别,赋能智能文档处理 |
| 55 | 【AI大模型前沿】Stream-Omni:多模态交互的“黄金三角”——视觉、语音、文本的完美融合 |
| 56 | 【AI大模型前沿】Vui:Fluxions-AI开源的轻量级语音对话模型,开启自然语音交互新时代 |
| 57 | 【AI大模型前沿】腾讯AI Lab开源的SongGeneration:音乐生成大模型的技术探索与实践 |
| 58 | 【AI大模型前沿】Osmosis-Structure-0.6B:小型语言模型在结构化信息提取中的突破 |
| 59 | 【AI大模型前沿】Kwai Keye-VL:颠覆认知!国产多模态大模型突然发布,视频理解能力堪比人类 |
| 60 | 【AI大模型前沿】Nanonets-OCR-s:从学术论文到法律合同,智能识别公式、签名、表格与图像 |
| 61 | 【AI大模型前沿】OmniAvatar:浙大联合阿里打造的音频驱动全身视频生成模型 |
| 62 | 【AI大模型前沿】DAMO GRAPE:阿里达摩院与浙江肿瘤医院联合打造的早期胃癌识别AI模型 |
| 63 | 【AI大模型前沿】阿里开源Lingshu:一个模型搞定12种医学影像诊断 |
| 64 | 【AI大模型前沿】原石科技MetaStone-S1:突破性反思型生成式大模型的技术解析与实践指南 |
| 65 | 【AI大模型前沿】清华实验室开源MOSS-TTSD:口语对话语音生成的突破 |
| 66 | 【AI大模型前沿】昆仑万维开源Skywork-R1V3:38B多模态推理模型,高考数学142分刷新开源SOTA |
目录
- 系列篇章💥
- 前言
- 一、项目概述
- 二、技术原理
-
- (一)、整体训练框架
- (二)、GRPO强化学习算法
- (三)、跨模态连接器微调
- (四)、数据蒸馏与冷启动
- 三、主要功能
-
- (一)、跨模态推理
- (二)、多学科泛化
- (三)、教育级链式思维展示
- (四)、工具调用与插件扩展
- 四、应用场景
-
- (一)、教育领域
- (二)、医疗领域
- (三)、科研领域
- (四)、艺术与创意
- 五、性能表现
-
- (一)、公开基准
- (二)、中国高考实测
- (三)、消融实验
- 六、快速使用
-
- (一)、环境准备
- (二)、模型下载
- (三)、推理示例
- (四)、vLLM高并发部署
- (五)常见报错与解决
- 七、结语
- 项目地址
前言
2025年7月9日,昆仑万维旗下Skywork AI团队宣布开源Skywork-R1V3-38B,以高考数学142分、MMMU 76分的成绩,首次让开源多模态模型逼近人类初级专家水平。本文将深度解析其技术原理、功能边界与落地实践,帮助开发者与教育、医疗、科研等行业伙伴快速上手。

一、项目概述
Skywork-R1V3是昆仑万维Skywork AI基于InternVL3-38B打造的开源多模态推理大模型,通过强化学习后训练,仅用2.5万条小数据即在数学、物理、医学影像等跨学科任务上超越同规模闭源模型,成为当前开源社区视觉-语言推理的新标杆。
二、技术原理
(一)、整体训练框架
1、两阶段策略:先进行冷启动监督微调(SFT)建立推理格式,再用GRPO强化学习激发跨模态推理潜能。
2、小数据高效训练:1.2万条SFT + 1.3万条RL样本,参数量38B,单卡A100 80G即可推理。
(二)、GRPO强化学习算法
1、Group Relative Policy Optimization:以组为单位估计相对优势,减少方差、加速收敛。
2、关键熵驱动机制:实时监测生成链式思维(CoT)关键步骤的熵值,过滤低熵“死记硬背”模型,确保推理多样性。
(三)、跨模态连接器微调
1、冻结大语言模型权重,仅训练视觉-文本连接器,减少灾难性遗忘。
2、引入领域平衡因子,缓解数学领域数据过拟合,提升历史、艺术等泛化性能。
(四)、数据蒸馏与冷启动
1、利用上一代R1V2的推理结果蒸馏出高质量CoT样本,降低标注成本60%。
2、冷启动阶段加入“错误纠正”样本,教会模型识别并修正自身逻辑漏洞,提升鲁棒性。
三、主要功能
(一)、跨模态推理
1、图像+文本联合解析:可读取物理受力图、化学结构式、心电图,并给出逐步求解过程。
2、多图融合:支持一次性输入多张图像进行关联推理,例如对比实验前后显微照片差异。
(二)、多学科泛化
1、数理逻辑:涵盖初高中竞赛到大学高数、线代、概率论。
2、人文社科:历史地图变迁、地理信息可视化、艺术作品风格分析。
(三)、教育级链式思维展示
1、可输出LaTeX格式的数学推导,方便教师直接嵌入课件。
2、支持中文、英文双语逐步解释,适配不同教学场景。
(四)、工具调用与插件扩展
1、开放Function Call接口,可调用Wolfram Alpha、Python解释器进行符号计算。
2、支持LangChain、LlamaIndex集成,快速构建RAG知识库问答。
四、应用场景
(一)、教育领域
1、个性化AI家教:学生上传手写题目照片,模型即时给出分步解析与错因分析。
2、智能阅卷:自动批改数学、物理大题,输出评分细则,教师复核效率提升3倍。
(二)、医疗领域
1、多模态诊断助手:结合CT/MRI影像与电子病历,输出疑似疾病列表及循证依据。
2、医学教育:住院医师上传病例,模型生成鉴别诊断思路,用于教学查房。
(三)、科研领域
1、实验数据洞察:读取论文图表与正文,提取关键结论并推荐下一步实验设计。
2、跨学科知识发现:输入地质图与气象数据,推理古气候演变模型。
(四)、艺术与创意
1、风格迁移分析:解析梵高、莫奈画作笔触,为新作品提供风格建议。
2、广告与营销:根据商品图与评论文本,生成多模态广告脚本。

五、性能表现
(一)、公开基准
1、MMMU(多学科多模态理解):76.0,领先第二名开源模型4.2分。
2、MathVista:68.7,超过GPT-4V 3.1分。
3、OlympiadBench:62.3,刷新开源纪录。
(二)、中国高考实测
1、2024年全国甲卷理科数学:142/150,错误集中在立体几何复杂作图题。
2、英语阅读理解:客观题满分,主观题得分率85%,语言模型部分仍有提升空间。
(三)、消融实验
1、移除关键熵机制后MMMU下降至71.4,证明多样性筛选有效。
2、仅用数学数据训练时,历史题得分降至39,显示连接器微调对泛化至关重要。
六、快速使用
(一)、环境准备
1、硬件:推荐单卡A100 80G或双卡RTX 4090 24G×2。
2、软件:
conda create -n r1v python=3.10 -y
conda activate r1v
git clone https://github.com/SkyworkAI/Skywork-R1V.git
cd Skywork-R1V/inference
pip install -r requirements.txt
(二)、模型下载
1、HuggingFace CLI登录
huggingface-cli login
2、拉取权重
huggingface-cli download Skywork/Skywork-R1V3-38B --local-dir ./Skywork-R1V3-38B
(三)、推理示例
1、命令行快速测试
python inference_with_transformers.py
--model_path ./Skywork-R1V3-38B
--image_paths ./examples/math.png
--question "请详细解析这道几何题的证明过程,并用LaTeX输出。"
2、返回结果示例
{
"answer": "\textbf{步骤1:}\quad 连接AC,利用勾股定理得AC=5...",
"chain_of_thought": "观察到图形中存在直角三角形,可优先应用勾股定理..."
}
(四)、vLLM高并发部署
1、安装vLLM
pip install vllm
2、启动服务
from vllm import LLM, SamplingParams
llm = LLM(model="./Skywork-R1V3-38B", tensor_parallel_size=2)
out = llm.generate(["<img>data:image/jpeg;base64,...</img> 求解"], sampling_params=SamplingParams(max_tokens=2048))
print(out[0].outputs[0].text)
(五)常见报错与解决
1、显存不足:启用AWQ量化版Skywork-R1V3-38B-AWQ,显存降至30 GB。
2、中文乱码:升级transformers>=4.42.0,确保tokenizer配置文件完整。
七、结语
Skywork-R1V3用极致的小数据训练策略和强化学习后训练,为开源社区带来了媲美闭源旗舰的多模态推理能力。随着Function Call与插件生态的完善,它将成为教育、医疗、科研等行业落地的首选基座模型。欢迎访问下方项目地址,一起探索跨模态智能的无限可能。
项目地址
GitHub:https://github.com/SkyworkAI/Skywork-R1V
HuggingFace:https://huggingface.co/Skywork/Skywork-R1V3-38B
技术论文:https://github.com/SkyworkAI/Skywork-R1V/blob/main/Skywork_R1V3.pdf

🎯🔖更多专栏系列文章:AI大模型提示工程完全指南、AI大模型探索之路(零基础入门)、AI大模型预训练微调进阶、AI大模型开源精选实践、AI大模型RAG应用探索实践🔥🔥🔥 其他专栏可以查看博客主页📑
😎 作者介绍:资深程序老猿,从业10年+、互联网系统架构师,目前专注于AIGC的探索(CSDN博客之星|AIGC领域优质创作者)
📖专属社群:欢迎关注【小兵的AI视界】公众号或扫描下方👇二维码,回复‘入群’ 即刻上车,获取邀请链接。
💘领取三大专属福利:1️⃣免费赠送AI+编程📚500本,2️⃣AI技术教程副业资料1套,3️⃣DeepSeek资料教程1套🔥(限前500人)
如果文章内容对您有所触动,别忘了点赞、⭐关注,收藏!加入我们,一起携手同行AI的探索之旅,开启智能时代的大门!